In several previous posts I covered how electricity and unnatural RF frequencies can adversely affect humans:
Women Are Canaries In The EMF Assault
Diabetes Has A Hidden Cause
Has The Primary Cause Of Cancer Been Hidden?
Heart Disease Is Caused By Electricity
Using Cell Phones Isn't Smart
Humans created these damaging frequencies and voluntarily use them.
Scientists have been aware of the damaging effects of electricity since the mid eighteenth century. Research has been done and books written describing the health destroying effects from that time to the present, but the information has been suppressed by businesses and governments, particularly in the West.
So people universally utilize this technology and rarely do their own research on how safe it is to use, trusting their governments to protect them if it’s harmful.
To some extent people have the ability to avoid this technology, and if enough people rejected damaging RF technology it could be eliminated, except possibly for use by police and emergency services.
So people could reject the harmful RF technology.
Animals don’t have this choice, and they are drastically effected by un-natural RF frequencies.
Scientists have been aware of this since the beginning of the 20th century.
The Birds
ALFONSO BALMORI MARTÍNEZ is a wildlife biologist who lives in Valladolid, Spain. In his official capacity he works in wildlife management for the Environment Department of his region, Castilla y León. But for over a decade he has also labored for a cause that he considers at least as important. “It was in about the year 2000,” he says, “that I began to be aware of serious health problems that were being provoked by cell phone antennas in certain individuals who were my neighbors and acquaintances, including a serious situation in the school which my two oldest sons were attending at that time.” The problem at the school, the Colegio García Quintana, was not easy to ignore, since he was confronted with it every time he dropped off his sons there. For looming over the playground, like a giant pincushion, a neighboring building’s rooftop harbored about sixty transmission antennas of all shapes and sizes.
The antenna farm sprouted its communication crop rapidly, and during the first year of its growth, between December 2000 and January 2002, five cases of leukemia and lymphoma were diagnosed in succession at the school—four in children aged four to nine, and the fifth in a seventeen-year-old young woman who did cleaning.
Considering that only four cases of leukemia and lymphoma in children under twelve had been diagnosed during the previous year in all of the province of Valladolid, the community was frightened.
The school was closed by the Health Department on January 10, 2002, and was reopened several weeks later after inspectors could find no dangerous conditions within. The antennas, however, were removed by court order of December 2001, and a new organization, AVAATE—Asociación Vallisoletana de Afectadas por Antenas de TElefonía (Valladolid Association of People Affected by Telecommunication Antennas)—arose from their ashes, nurtured in part by a newly motivated Balmori, who was disturbed by what he was learning.
People exposed to antennas were not just getting cancer, but in much greater numbers they were getting headaches, insomnia, memory loss, heart arrhythmias, and acute, even life-threatening neurological reactions.
“After educating myself over a period of several months,” he recalls, “and discovering that something so evident was considered by the authorities to be groundless fear and little more than a ‘social psychosis’ without scientific basis, I decided to study the effects on fauna and flora. I thought that a ‘collective psychosis’ or ‘groundless fear’ could not be attributed to non-human organisms. And so I began to study storks, pigeons, trees, insects, tadpoles… and to publish the results that I was obtaining.”
The effects Balmori found were dramatic and universal. Radiation from cell phone antennas affected every species he looked at. Storks, for example. White storks (Ciconia ciconia) are a common urban bird in many Spanish cities, inhabiting buildings and church steeples alongside sparrows and pigeons.
Selecting 60 rooftop nests scattered throughout Valladolid—30 that were within 200 meters of one or more cell sites, and 30 that were further than 300 meters (about 1,000 feet) from any cell sites—Balmori observed the storks with telescopes during the spring of 2003 to determine their breeding success. By measuring the electric field at each location, he verified that the radiation, on average, was four and a half times more intense at the closer locations. Between February 2003 and June 2004 he also paid several hundred visits to 20 nests that were within only 100 meters of a cell site in order to observe the birds during all phases of breeding.
The results, for a wildlife biologist, were profoundly disturbing. The nests that were closer than 200 meters from the nearest cell tower fledged half the number of baby storks as the nests that were further away. Of the 30 highly exposed nests, 12 fledged no chicks at all, while only one of the lesser exposed nests was barren. Of the 12 highly exposed nests where no young were flown, some had hatched out no chicks, and others had produced chicks that died soon after hatching. The behavior of the birds that nested within 100 meters of a tower was just as troubling. Stork couples fought over nest construction. Sticks fell to the ground while the couple tried to build the nest.
“Some nests were never completed and the storks remained passively in front of the cellsite antennae.”
In light of the plummeting numbers of house sparrows in Europe, Balmori also undertook to monitor the number of sparrows at thirty parks and park-like locations in Vallodolid between 2002 and 2006. He visited each of these points on Sunday mornings, once a month for four years, counting birds and measuring radiation. He found not only that sparrows were becoming generally much fewer over time, but that they were incredibly more numerous in less irradiated areas—42 sparrows per hectare where the electric field was 0.1 volts per meter, down to only one or two sparrows per hectare where the electric field was over 3 volts per meter. It was clear to Balmori why the species was disappearing.
The United Kingdom had even added the house sparrow to its Red List of threatened and endangered species after the bird’s population in British cities fell by 75 percent between 1994 and 2002. “This coincides with the rollout of mobile telephony,” he wrote. If the declining trend that he observed in his home town continued, he said, the house sparrow would be extinct in Valladolid by 2020.
And the apparent effects of the radiation were not confined to storks and sparrows. Antennas had been installed in the “Campo Grande” urban park in Valladolid during the 1990s, and Balmori monitored the avian population there for the next decade. These are some of Balmori’s observations from 2003:
Kestrel: “A general disappearance of the kestrels that had bred every year on nearby roofs, after antennas for mobile telecommunications were installed.”
White Stork: “Although this species is quite opposed to abandon its nest, even under adverse conditions, the nests placed near phone masts’ radiation beams gradually disappeared.”
Rock Dove (domestic): “Many dead specimens appeared near phone mast areas.”
Magpie: “Anomalies were detected in a great number of specimens at points highly contaminated with microwave radiation; such as, plumage deterioration, especially in head and neck, locomotive problems (limps and difficulties in flying), partial albinism and melanism, especially in flanks, and a tendency to stay long in low parts of trees and on the ground.”
Green woodpeckers, short toed treecreepers, and Bonnelli’s warblers, all previously common, disappeared sometime between 1999 and 2001 and were not seen again.
Half of the park’s 14 resident bird species had either seriously declined or vanished despite the fact, as Balmori points out, that air pollution improved.
The decline of the house sparrow is a worldwide tragedy. “Twenty, even 10 years ago, it was unimaginable that the house sparrow would be the focus for discussion at an international ornithological or environmental conference,” wrote Jenny De Laet and James Denis Summers-Smith.
Their 2007 study found spectacular declines of over 90 percent in house sparrow populations in London, Glasgow, Edinburgh, Dublin, Hamburg, Ghent, Antwerp, and Brussels. Scattered throughout Princes Street Gardens, a 50-acre park in central Edinburgh, at least 250 sparrows had resided as recently as 1984. In 1997, only 15 to 30 birds were left, in only a single location.
The population of sparrows in Kensington Gardens, a 275-acre park gracing central London, declined from 2,603 in 1925 to just four in 2002. This bird, which has associated with human beings for at least ten thousand years, is vanishing even where there are plenty of seeds and insects, where ornithologists can find no obvious cause for its decline. But there is a cause, and it is hidden in plain sight. Today, twenty-six antenna installations are lined up on the northern, western, and southern borders of Kensington Gardens, operated by Vodafone, T-Mobile, Orange, O2, 3, and Airwave.
They are saturating this beautiful park with microwaves so that human visitors can use their cell phones and the police can use their radios. The situation in Edinburgh’s Princes Street Gardens is even worse. Thirty-four cell sites surround this much smaller park, most of them less than five meters above the ground. The only location where sparrows still nested in 1997—the Gatekeeper’s cottage—is nestled against the bottom of an artificial hill called The Mound, and is the only spot in the entire park that is not in the direct beam of multiple microwave antennas. The irradiation of these parks that began in 1992 parallels the catastrophic collapse of their house sparrow communities.
The situation in Switzerland has become so alarming that the Swiss Association for the Protection of Birds declared the house sparrow “bird of the year” for 2015.
A study conducted by zoologist Sainudeen Pattazhy in Kerala, India during 2008 and 2009 found that house sparrows were virtually extinct there.
In Delhi, ornithologist Mohammed Dilawar reminisces that “till March 2001, they were in and out of our home. We left for a while to return to see, the commonest bird had flown the nest.”
Pattazhy’s conclusion is the same as Balmori’s: cell towers are leaving sparrows no place to live. “Continuous penetration of electromagnetic radiation through the body of birds affects their nervous system and their navigational skills. They become incapable of navigation and foraging. The birds which nest near towers are found to leave the nest within one week,” he says. “One to eight eggs can be present in a clutch. The incubation lasts for 10 to 14 days. But the eggs which are laid in nests near towers failed to hatch even after 30 days.”
The impact of radio waves on bird reproduction is no longer a matter of conjecture. While Balmori was doing his field study on storks, scientists in Greece were proving the effects in their laboratory. Ioannis Magras and Thomas Xenos at Aristotle University of Thessaloniki first exposed 240 newly laid quail eggs in an incubator to the type of radiation emitted by FM radio transmitters.
The levels of radiation were about the same as if the birds had built nests one to three hundred yards away from a 50,000-watt tower. But these eggs were exposed for only three days, and for only one hour a day: thirty minutes in the morning and thirty minutes in the afternoon. Forty-five of the embryos died. None of 60 quail eggs, nearby in an unirradiated incubator, died.
Then the same researchers exposed 60 more quail eggs to pulsed microwaves—the type of radiation emitted by cell towers—continuously for three days, this time at only 5 microwatts per square centimeter, a level of exposure commonly found in cities today. Under these conditions 65 percent of the embryos were killed.
In a third experiment 380 chicken eggs were exposed to microwave radiation at a power level of 8.8 microwatts per square centimeter. Instead of irradiating them as soon as they were laid, the researchers exposed the eggs between the third and tenth days of their development. Under these conditions most of the embryos lived but developed abnormally. Under continuous-wave radiation 86 percent of the eggs hatched, but 14 percent of the chicks died soon after birth. Almost half of the remaining chicks were developmentally retarded and 3 percent had severe birth defects. Pulsed radiation produced a similar number of deaths, about half the number of retarded chicks, and twice the number of birth defects. Of 116 unexposed eggs, only two failed to hatch, none had birth defects, and only two were retarded in development.
Disastrous effects of radio waves on birds were first noticed during the 1930s by those who were most intimately connected with them: homing pigeon racers, and divisions of the military that were still using carrier pigeons for communication. Charles Heitzman, a father of the pigeon-racing sport in the United States, and Major Otto Meyer, former head of the United States Army’s Pigeon Corps, were both alarmed by the large numbers of pigeons losing their way during the heyday years of the expansion of radio broadcasting.
Apparently, after many pigeon generations, the birds learned to adjust to the new conditions and the problem was largely, though not entirely, forgotten.
Then in the late 1960s a team of Canadian researchers shed some new light on the problem.
They were J. Alan Tanner, at Control Systems Laboratory, National Research Council, Canada; César Romero-Sierra, professor of neuroanatomy at Queens University; and Jaime Bigu del Blanco, biophysicist and research associate in the Queens University Department of Anatomy. They began by exposing young chickens to microwave radiation at relatively high power levels, between 10 and 30 milliwatts per square centimeter. The birds usually collapsed to the floor of their cage within 5 to 20 seconds. Even if only their tail feathers were exposed they would scream, defecate, and try to escape. Experiments using pigeons and seagulls gave similar results. But not if the birds were defeathered. Chickens that had been plucked showed no evident reaction to being irradiated until about the twelfth day when their regrowing feathers were about one centimeter long.
The researchers then measured radiation patterns in the laboratory using both individual feathers and arrays of feathers spaced varying distances apart, and proved that bird feathers make fine receiving aerials for microwaves. If this takes place while the bird is flying, they said, “an increase in the microwave field strength should be ‘sensed’ by the bird.”
In the 1970s, Professor William Keeton at Cornell University proved that pigeons are so sensitive to magnetic disturbances that a change in the earth’s magnetic field amounting to less than one ten-thousandth of its average value significantly altered the takeoff direction of a bird’s homeward flight.
In the 1990s and early 2000s, when cell phone towers proliferated, raising the ambient levels of microwave radiation tens to hundreds of times higher everywhere in the world, when white storks had trouble reproducing near antennas, and when house sparrows made it onto the endangered species list in the United Kingdom, membership in pigeon-racing clubs plummeted and pigeon fanciers were forced to pay renewed attention to a problem they had laid aside in the 1950s. The secretary of the New Ross and District Pigeon Club in Ireland, Jim Power, blamed the new problem of lost birds, which had begun in about 1995, on “satellite television and the mobile telecommunications network.” The story made the front page of the Irish Times. Both events—the explosion of cell towers and severe pigeon losses—came to America in 1997.
In early October 1998 the story made headlines all over the United States as, during a two-week period, pigeon races far and wide ended in disaster, with up to ninety percent of birds going missing.
“They’re turning up in barns. Under bird feeders. On window ledges. And sometimes just standing out in the rain,” read the first paragraph of an article in the Washington Post. Out of 1,800 birds competing in a race from New Market, Virginia to Allentown, Pennsylvania, about 1,500 vanished.
In a race from western Pennsylvania to suburban Philadelphia, 700 out of 900 pigeons failed to return. In a 350-mile race from Pittsburgh to Brooklyn, 1,000 out of 1,200 birds never showed up.
Very few wild birds were out flying. Hawks were not out hunting. Geese were scattered all over the sky, instead of in normal “V” formations. The trigger for the two weeks of sudden bird disorientation was apparently the commencement of microwave rain falling from satellites. On September 23, 1998, Motorola’s 66 newly-launched Iridium satellites had begun providing the first-ever cell phone service from space, everywhere on earth, to its first 2,000 trial subscribers.
Many members of the British Royal Pigeon Racing Association changed the route their birds flew so as to avoid cell towers and lose fewer pigeons. In 2004, the Association called for more research into the impact of microwave radiation on birds. And as old-time pigeon racers gradually left the sport in discouragement, they were replaced by young enthusiasts who do not remember what it was like when almost all released pigeons would fly directly back to their roosts. The kinds of extraordinary losses Larry Lucero of New Mexico complained about in 1997—an 80 percent loss of birds in eight weeks of racing—are no longer considered unusual. Sankaralingam, the president of the Chennai Homer Pigeons Association in India, reminisces. “Earlier,” he says, “before the advent of cell phones, if I liberated 100 pigeons in my Kodungaiyur neighborhood, all would return home in a couple of minutes.” Texas pigeon racer Robert Benson states that today, “under the best of conditions, a 25% loss before the race can be expected. It is not surprising to see a 75% loss.”
“The number of losses occurring each year,” says Kevin Murphy at Scotland’s Angus College, “is showing no signs of improvement and whenever you speak to pigeon fanciers it’s the same old story; high losses in young birds and very few fanciers that are able to build up an established team of 3, 4 and 5 year old experienced birds.”
Radio-tagging Animals
In an exercise in scientific folly, Murphy is proposing to solve the problem by developing a GSM/GPS device that will be fitted onto pigeons’ legs to keep track of wayward birds. Initially this is a research project—designed, he says, to see if solar flares and magnetic storms affect the birds’ homing ability. But the devices will track birds by satellites and cell phone towers—the very things that are now responsible for far more pigeon losses than solar flares. Worse, the devices, being radio transmitters themselves, will expose the birds at point blank range to far more radiation than distant cell towers.
Microchipping pigeons to keep track of them is not yet standard practice in this sport. But in recent years pigeon racers are already making a bad situation worse by attaching radio frequency identification (RFID) “chip rings” to each bird’s foot during every race, so that when the bird arrives home and crosses the finish line, an RFID scanner automatically records the time of arrival. These are passive devices containing no batteries and rely on external sources of energy to activate them.
But sudden deaths of exotic birds immediately after being microchipped are not unusual. And as so many electrically sensitive people are discovering—people who can’t handle their own chip-embedded drivers’ licenses and passports—the radio frequency oscillators inside even passive devices pollute their immediate environment enough to affect the nervous systems even of organisms without any homing ability.
Attaching a radio tracking device to a wild animal is like giving the animal a cell phone to wear.
Land-based wildlife tracking systems use frequencies between 148 and 220 MHz and emit 10 milliwatts of power, day and night. Satellite tracking systems, such as are used to track dolphins and whales, require the animal to wear a much stronger transmitter, radiating from 250 milliwatts up to 2 watts of power—equivalent to giving the animal a satellite phone to wear. These are also used to track turtles, sharks, polar bears, musk oxen, camels, wolves, elephants, and other animals that roam or swim very long distances. They are also used on long-migrating or elusive birds, such as albatrosses, bald eagles, penguins, and swans.
Snakes, amphibians, and bats are being radio tagged. Even butterflies, and fish in lakes and rivers are being outfitted with transmitters. If a creature exists today that is large enough to fashion antennas for, you may be assured that resourceful wildlife biologists have devised ways to affix them onto members of its species, be it by means of collars, harnesses, or surgical implants. In a misguided effort to discover why honey bees are disappearing, Australia’s leading scientific research agency, the Commonwealth Scientific and Industrial Research Organization, is in process of attaching RFID tags with superglue to the backs of two and a half million bees and placing RFID readers inside one thousand hives.
On February 6, 2002, the U.S. National Park Service issued a report warning wildlife biologists that radio tracking devices could radically alter the very behaviors they are using the devices to study, and that not only the physical dimensions of the devices, but the radio waves they emit could be detrimental to the animals’ health. Effects of radio-tagging birds, according to this and other reports, have included increased preening, weight loss, abandonment of brood, reduced time spent in flight, increased metabolism, avoidance of water, decreased courtship activity, decreased feeding activity, decreased clutch survival, reduced wing growth, greater susceptibility to predation, lowered reproductive success, and increased mortality.
Radio collared mammals, including rabbits, voles, lemmings, badgers, foxes, deer, moose, armadillos, river otters, sea otters, and wild dogs in the Serengeti have suffered increased mortality, impaired digging ability, weight loss, reduced activity levels, increased self-grooming, altered social interactions, reproductive failure, and profoundly altered sex ratios of offspring. In one study of moose, calves with plain ear tags and calves without any ear tags had equal mortality rates—about 10 percent—while 68 percent of calves with ear tags that contained transmitters died.
This had the researchers scratching their heads because they could find no difference between the plain tags and the ones that killed the calves except the presence of radio waves. In another study, involving water voles at England’s Bure Marshes National Nature Reserve, colonies that contained radio tagged females gave birth to more than four times as many males as females. The researchers concluded that likely none of the radio tagged female voles gave birth to any female offspring.
In some cases radio tagging endangered species may drive them further toward extinction. In 1998, the first Siberian snow tiger ever to go through her pregnancy and give birth while wearing a radio collar delivered a litter of four, of which two died from genetic abnormalities.
The results of an extensive review of the literature, published in 2003, examining 836 scientific studies on radio tagged animals, found that 90 percent of them ignored the effects of the radio tags on the animals, making a tacit assumption that they had no significant impact. But of those studies that asked the question, the majority found one or more detrimental effects of these devices on their bearers.
Migratory Birds
Even in captivity, when the migratory season is upon them, songbirds will face the direction in which they have an urge to fly.
Therefore, scientists at the University of Oldenburg in Germany were shocked to find, beginning in 2004, that the migratory songbirds they had been studying were no longer able to orient themselves toward the north in spring and toward the southwest in autumn. Suspecting that electromagnetic pollution might be responsible, they surrounded the aviaries in which they kept European robins with grounded aluminum sheeting beginning in the winter of 2006-2007. “The effect on the birds’ orientation capabilities was profound,” wrote the authors of the study, which they published in 2014. Only when the aluminum sheeting was grounded did the birds orient normally in springtime. And since the enclosure, when not grounded, only admitted frequencies below 20 MHz, the birds were evidently being disoriented not by cell towers, but by radiation originating from AM radio towers, as well as from ordinary household electronic equipment.
In a rural area outside Oldenburg, the robins were still able to orient themselves without the aluminum screening. But the scientists issued a warning: “If anthropogenic electromagnetic fields prevent migratory songbirds from using their magnetic compass, their chances of surviving the migratory journey might be significantly reduced, in particular during periods of overcast weather when sun and star compass information is unavailable. Night-migratory songbird populations are declining rapidly.”
Amphibians
In the mid 1990’s the decline of frogs, toads, salamanders, and other amphibians the world over was consistently reported in the mainstream media.
“An Amphibian Horror Story,” screamed a headline from New York Newsday. “Trouble in the Lily Pads,” announced Time Magazine. “Space Aliens Stealing Our Frogs,” read a supermarket tabloid. It seemed that mutant frogs were turning up by the thousands in pristine lakes, streams, and forests all across the American midwest. Their deformed legs, extra legs, missing eyes, misplaced eyes, and other genetic mistakes were frightening school children out on field trips. Every species of frog and toad in Yosemite National Park, I learned, was disappearing. The boreal toad, which used to be so abundant near Boulder, Colorado that drivers would squish large numbers on mountain roads, had dwindled to about five percent of its former population.
Frogs were falling silent in other countries too, and had been doing so for over a decade. In the Monteverde Cloud Forest Preserve of Costa Rica, the famous and highly protected golden toad, named for its brightly colored skin, had gone extinct.
Eight of thirteen frog species in a Brazilian rainforest preserve had vanished. The gastric-brooding frog of Australia, named for its habit of incubating its young in its stomach, “broods no longer.” Seventy-five species of the colorful harlequin frogs that once lived near streams in the tropics of the Western Hemisphere had not been seen since the 1980s.
What so puzzled scientists was not just that an entire very ancient class of animals—the Amphibia—were disappearing, but that they were vanishing in so many pristine, remote environments that were thought to be unpolluted.
Environmentalists, for the most part, like the rest of modern humanity, have one terrific blind spot: they don’t acknowledge electromagnetic radiation as an environmental factor, and they are comfortable with placing power lines, telephone relay towers, cell towers, and radar stations in the middle of the most remote, pristine mountainous locations, never realizing that they are intensely polluting those environments.
The discovery of grossly deformed frogs in the midwest was related to the increasingly frequent reports from farmers in the midwest of cows and horses born with webbed necks and legs on backwards after cell towers were built on or next to their farms. It seemed more than coincidental that the reports of misshapen amphibia were coming from popular lake vacation districts, which were almost certain to have had cell towers built during 1996.
in 2009, Balmori put his speculations to the test. During a two-month period he took care of two almost identical tanks of tadpoles of the common frog that he set out on the fifth floor terrace of an apartment in Valladolid. One hundred forty meters (450 feet) away, on the roof of an eight-story building, stood four cellular phone base stations, which were irradiating the neighborhood. The only difference between the two tanks of tadpoles was that a layer of thin fabric was draped over one. The fabric, woven with metallic fibers, admitted air and light but kept out radio waves. The results were a shocking confirmation of what was occurring out in the rest of the world: in a period of two months, the mortality rate was 90 percent in the exposed tank, and only 4 percent in the shielded tank. Almost all of the exposed tadpoles—exposed only to what the residents of the apartment building were also exposed to—swam in an uncoordinated fashion, showed little interest in food, and died after six weeks. Balmori titled his 2010 article, “Mobile Phone Mast Effects on Common Frog ( Rana temporaria) Tadpoles: The City Turned Into a Laboratory.”
In the late 1990s, researchers in Moscow had put these kinds of effects to the test in another urban laboratory, using another device that we all take for granted. They exposed developing frog embryos and tadpoles to an ordinary personal computer. The resulting frogs had severe malformations that included anencephaly (absence of a brain), absence of a heart, absence of limbs, tail necrosis, and other deformities that were “incompatible with survival.
Insects
The insect world is as susceptible to electromagnetic pollution as the amphibian world. In fact, as Alexander Chan discovered in 2004, it is so easy to demonstrate the effects of computers and cell phones on diminutive creatures that even a sophomore in high school can do it for a science fair project. Then fifteen years old and a student at Benjamin Cardozo High School in Queens, New York, Chan exposed fruit fly larvae daily to a loudspeaker, a computer monitor, and a cell phone and observed their development. The flies that were exposed to the cell phone failed to develop wings. “Radiation and electromagnetic emissions are really more harmful than anyone realizes,” the stunned teenager concluded.
At the University of Athens, Dimitris Panagopoulous has been doing similar work with fruit flies for a decade and a half, and producing results that are just as alarming. Like Chan—and unlike most other scientists doing research on electromagnetic radiation—he and his colleagues in the Department of Cell Biology and Biophysics decided to expose their flies not to specialized equipment, but to an ordinary cell phone in use. In their first experiments, in 2000, they found that a few minutes’ exposure was enough to radically interfere with fly reproduction. Exposing adult flies to the antenna of a working cell phone for just six minutes a day for five consecutive days reduced the number of eggs they laid by 50 to 60 percent. When the insects were exposed for only two days, i.e. a total of twelve minutes of radiation, the number of eggs was reduced by an average of 42 percent. Even flies that were exposed for only one minute a day for five days produced 36 percent fewer offspring than their unexposed cousins. Regardless of whether just male flies, just female flies, or both were exposed, the number of offspring was greatly reduced.
Their experiments cried out for an explanation, because such rapid sterilization was an effect scientists were used to seeing from X-rays, not from an ordinary cell phone. So in follow-up experiments, after zapping the flies with a cell phone for five days—again for six minutes a day—the researchers killed the flies and used a standard technique—the TUNEL assay—to look for fragmented DNA in the ovaries and egg chambers of the female flies. Using this technique they proved that the brief exposure to a cell phone was causing the death and degeneration of 50 to 60 percent of both eggs and their supporting cells at all stages of development.
In later experiments these scientists have found “intensity windows” of maximal effect—a not uncommon finding in electromagnetic research. In other words, the greatest damage is not always done by the greatest levels of radiation. Holding your cell phone away from your head may actually worsen the damage. Using a 900 MHz phone, Panagopoulos’ flies produced even fewer offspring when the antenna was held a foot away—reducing the exposure level by a factor of almost 40—than when the antenna was actually touching the vial of flies. With an 1800 MHz phone, maximum mortality occurred at a distance of eight inches.
In a large series of further experiments, exposure to a cordless phone base station, a cordless phone handset, a WiFi router, a baby monitor, a microwave oven, and several different kinds of bluetooth devices each lowered the numbers of offspring of two different species of fruit flies by up to 30 percent. Exposure time varied from 6 minutes, just once, up to thirty minutes a day for nine days.
Every experiment, regardless of exposure time, produced cell death in the developing eggs and at least a ten percent reduction in the number of offspring.
And in Belgium, entomologist Marie-Claire Cammaerts has shown, in experiments that any high school student could duplicate, that a cell phone is clearly and obviously dangerous even when it is turned off, as long as the battery remains in it. She brought thousands of ants into her laboratory at the Free University of Brussels, placed an older model flip phone under their colonies where they could neither see nor smell it, and simply watched them walk. When the phone contained no battery it affected the ants not at all. Neither did the battery alone. But as soon as the battery was placed in the phone—even though it was still turned off—the ants’ helter-skelter movements became radically disturbed. The little creatures darted back and forth with increased vigor, as if trying to escape an enemy they could not see. The rate at which they changed directions—their angular speed—increased by 80 percent. When the phone was then put into standby mode, they changed directions even more. Finally, Cammaerts turned the phone on. Within two to three seconds, the insects visibly slowed down.
Cammaerts next exposed a fresh ant colony to a smartphone and then a “DECT” cordless phone.
In each case the creatures’ angular speed doubled or tripled, while their actual walking speed drastically slowed. This happend within one to three seconds. When the DECT phone was on, the ants were “nearly paralyzed.” After being thus exposed for three minutes to each of the two pieces of equipment, they required two to four hours before they appeared normal again. Cammaerts then repeated the experiment with a fresh colony, this time placing a flip phone in standby mode under the ants’ nest instead of under its foraging area. Immediately all the ants left their nest, taking their eggs, larvae, and nymphs with them. “It looked spectacular,” she said. “They relocated their nest far from the place under which the mobile phone was located. After the experimentation, when the mobile phone has been removed, the ants returned to their initial nest, transporting back their brood into the nest. This relocation lasted about one hour.”
Finally, Cammaerts tested a WiFi router, placed between two colonies of ants, about one foot away from each colony. While the router was still switched off, nothing unusual happened. But “after a few seconds of exposure, the ants clearly presented signs of bad health and, consequently, a disturbed behavior.” After being exposed to the router for thirty minutes, the ants had to recover for six to eight hours before foraging as usual again. “Unfortunately,” wrote Cammaerts, “several ants never recovered and were found dead a few days later.”
For his part, Panagopoulous, in a chapter of a 2012 book about Drosophila melanogaster, has issued a severe and unusual warning to the world: “The experimental results of ours as well as of other experimenters show that microwave exposure even for a few minutes per day and for only a few days, at exposure levels encountered in our everyday environment, is maybe the most intense modern environmental stress factor compared to other environmental stress factors tested so far, like starvation, heat, chemicals, electric or magnetic fields.” He warned that DNA damage to the developing egg may “result in inherited mutations transferred to subsequent generations. For this reason the biological changes due to microwave radiation may be far more dangerous as they may not be restricted only to changes in reproductive capacity.”
The Bees
Colony Collapse Disorder
Perishing honey bees are a warning to the world, but the real story is not circulating because it is not yet acceptable to remove the cultural blinders regarding electricity. Beekeepers the world over are still poisoning their bees against parasites that are not killing them, instead of paying attention to the influence that is.
“I observed a pronounced restlessness in my bee colonies,” wrote Ferdinand Ruzicka to the Austrian beekeeping community in 2002, “and a greatly increased urge to swarm.” Ruzicka, a medical physicist retired from the University of Vienna, is also an amateur beekeeper. He observed the strange behavior after telecommunications antennas appeared in a field near his hives. “I am a frame-hive beekeeper,” he wrote. “The bees now built their honeycombs not in the manner prescribed by the frames, but in a helter skelter fashion. In the summer, the colonies collapsed without any obvious cause. In the winter, despite snow and below zero temperatures, the bees would fly out and freeze to death next to the hive. Colonies that exhibited this behavior collapsed, even though they were strong, healthy colonies with active queens before the winter. They were provided with adequate additional food and the fall pollen supply had been more than sufficient.”
Ruzicka told his story in Bienenwelt (“Bee World”) and published a survey form in Bienenvater (“Beekeeper”), requesting to be contacted by others with antennas near their hives. The majority of Bienenvater readers who filled out his form corroborated what he had written: their bees had become suddenly aggressive when the antennas appeared, and had begun to swarm; their healthy colonies had vanished for no other reason.
Bee colonies have been disappearing near communication towers for over a century. On the small island lying off England’s southern coast where Marconi sent the world’s first long-distance radio transmission in 1901, the bees began to vanish. By 1906, the island, then host to the greatest density of radio transmissions in the world, was almost empty of bees.
Thousands, unable to fly, were found crawling and dying on the ground outside their hives. Healthy bees imported from the mainland began dying within a week of arrival.
During the next few decades “Isle of Wight disease” was reported throughout Great Britain and in Italy, France, Switzerland, Germany, Brazil, Australia, Canada, South Africa, and the United States. Almost everyone assumed it was infectious, and in 1912, when Graham Smith at Cambridge University found a parasite called Nosema apis in the stomachs of some diseased bees, most people thought the mystery had been solved. However, this theory was soon disproven by John Anderson and John Rennie in Scotland; swarms of bees that were “crawling” with Isle of Wight disease were free of Nosema, while healthy stocks were found teeming with the parasite. Finally the two researchers deliberately infected a colony with Nosema. It did not produce disease.
So the search went on for a different parasite, and in 1919 Rennie presented Acarapis woodi, which inhabited bees’ breathing passages. His article in the Transactions of the Royal Society of Edinburgh had such wide influence that the tracheal mite is today regarded as one of the two major parasitic infections of bees that are responsible for colony collapse disorder. It supposedly kills bees by sucking their blood and clogging their breathing tubes. In fact, this is so widely accepted that it is standard practice for commercial beekeepers to treat all their bees with miticides to kill both tracheal mites and a second kind of mite, the Varroa mite. However, in the late 1950s the tracheal mite theory was disproven, too, by the eminent British bee pathologist, Leslie Bailey. Not only did he show that mite-infested bees did not die at greater rates than non-infested bees, but he deliberately infected healthy bees with the parasite and proved that it did not cause disease. The only effect of infestations, wrote Bailey in 1991, is to “shorten very slightly the life of bees, but usually causing no obvious sickness in spite of the abnormal appearance of infested tracheae.”
Bailey also warned against attaching too much importance to the Varroa mite, which, he said, had achieved its notoriety partly because of its size: it is the only common parasite of honey bees that can be seen with the naked eye and identified with a hand lens. Varroa mites, after all, while not harmless, have coexisted with wild populations of honey bees for a century in Japan and Russia, and more recently in Serbia, Tunisia, Sweden, Brazil, Uruguay, and even parts of California and New York. Other environmental factors, said Bailey, determine the amount of damage done by this parasite.
The problem of Isle of Wight disease smoldered for decades, not often making the news. But the number of managed honey bee colonies in the United States has been quietly declining since the 1940s. During the 1960s and 1970s unexplained large losses acquired a new name—“disappearing disease”—and was reported in Montana, Nebraska, Louisiana, California, Texas, Europe, Mexico, Argentina, and Australia. Beekeepers would open their hives in autumn or winter to find ample supplies of stored pollen and honey but no bees. Where some dead or living bees remained, they were not malnourished and had no mites or other parasites, bacteria, viruses, or poisons. Attempts to transmit the condition by introducing bees from “diseased” hives into healthy ones failed. When a survey was conducted by the United States Department of Agriculture in 1975, the problem turned up in 33 states, with beekeepers often volunteering that it had been prevalent in their colonies for ten or fifteen years, and that it was getting worse with each passing year.
Then, during the last half of the 1990s, when the telecommunications industry was beginning to weave its web of antennas over cities, farmland, and wildland, American farmers reawoke to a crisis. The smoldering, half-forgotten problem about disappearing bees was erupting in flames.
“Farmers Stung By Bee Shortages,” warned a headline in the June 15, 1996 edition of the Washington Post. During the previous winter, beekeepers had lost 45 percent of their hives in Kentucky, 60 percent in Michigan, 80 percent in Maine. Farmers were also waking up to the fact that wild bees weren’t going to be there to take over the job of pollinating their crops, because 90 percent of all feral honey bee colonies nationwide had already disappeared. All this havoc—at least in the United States—was thought to have been caused by two bee parasites, the tracheal mite and the even more voracious Varroa mite, assumed to have hitchhiked into the United States in shipments of infected bees from Europe and Asia during the 1980s.
But the alarm spread to Europe during the winter of 2002-2003. Officially there was no panic: colony losses were “only” 20 percent in Sweden and 29 percent in Germany. Swedish beekeeper Börje Svensson, who published an article titled “Silent Spring in northern Europe?”, begged to differ. When he opened up his hives that winter, 50 out of 70 colonies were devoid of life. A neighbor had lost 95 of 120 colonies, and another neighbor lost 24 of 25. Fellow beekeepers in Austria, Germany, Belgium, Denmark, and Finland were reporting similar huge losses, although many could find no Varroa mites, and no sign of foulbrood, sacbrood, chalkbrood, Nosema, or other bee diseases.
Finally, during the winter of 2006-2007, what was once known as Isle of Wight disease became a worldwide panzootic, frightening farmers and the public everywhere, and was given yet another name: colony collapse disorder. The United States lost one-third of its honey bees in just a few months, with many beekeepers experiencing a total loss of their bees. First thought to be confined to Europe, North America and Brazil, colony collapse disorder soon spread to China, India, Japan, and Africa. Farmers in many countries are pollinating growing acreages of crops with half as many bees, and replenishing their losses with greater difficulty and expense with each succeeding year.
And the culprit, according to a study conducted by a joint team of American and Belgian researchers, does not seem to be tracheal mites, Varroa mites, Nosema, or any other particular infectious disease vector. During the disastrous winter of 2006-2007, this team, headed by Jeffery Pettis of the United States Department of Agriculture’s Bee Research Laboratory, examined thirteen large apiaries owned by eleven different commercial beekeepers in Florida and California, and to their amazement were unable to find any specific nutritional, toxic, or infectious factor that differentiated bees or colonies with and without colony collapse disorder. Tracheal mites were actually more than three times as prevalent in the healthy colonies as in the decimated colonies.
Even the supposedly devastating Varroa mite was not more prevalent in collapsed or collapsing colonies. The only helpful conclusion that these scientists were able to come to was that “some other factor” must be responsible for the bees’ weakened state, and that the “other factor” seemed to be location-specific: colonies with this disorder tended to cluster together.
The picture of this disease that has beekeepers so thoroughly baffled resembles nothing so much as the scene of an apparent mass murder where there is not even any real evidence of a crime. A million colonies a year in the United States disappear overnight without leaving a trace. The queen bee and mother of the hive is simply abandoned by the workers and left to starve and die. What has scientists even more stumped is that the dead colonies tend to be left alone even by the parasites that normally infest dead honey bee colonies. It is as though there were a large “KEEP OUT” sign at the entrance to these hives that is respected by friend and foe alike.
The international beekeeping community is extremely resistant to giving up its long-standing belief in the infectious nature of bee losses, and so, in the absence of evidence, most beekeepers are falling back on the only thing they know: more toxic pesticides to kill mites.
But the decimation of so many other insect species that are not subject to the same parasites is a strong hint that a non-infectious agent is at work. The Franklin bumble bee, once prevalent in southwestern Oregon, has not been seen in a decade. Until the mid-1990s, the western bumblebee was abundant in forests, fields, and urban backyards throughout western North America, from New Mexico to Saskatchewan to Alaska. It has vanished except for small pockets in the Colorado Rockies. The rusty-patched bumble bee, a familiar visitor to flowers on the Cornell University campus, has not been seen in New York State since 2004. Once common in 26 states and two Canadian provinces, this insect has disappeared from the eastern United States and Canada and has drastically declined in the American midwest. The Xerces Society for Invertebrate Conservation lists 57 species of bees and 49 species of butterflies and moths native to North America and Hawaii as vulnerable, imperiled, or extinct in their entire range. The Massachusetts Division of Fisheries and Wildlife lists 46 species of butterflies and moths that are threatened and endangered in Massachusetts.
Exquisite sensitivity to electromagnetic fields has been demonstrated in a variety of insects.
Termites, for example, will avoid building their galleries near other groups of termites, so as not to compete for food. In 1977, Günther Becker proved that the signal that enables groups of termites to avoid competing with each other passes through walls and can be blocked by aluminum, but not by thick polystyrene and not by solid glass. The signal blocked by the aluminum had to be alternating electric fields emitted by the insects.
It must not be forgotten, warns German biologist Ulrich Warnke, that every insect is equipped with a pair of antennas, which are demonstrably electromagnetic sensors. In fact, the signals communicated between honey bees when they meet and touch antennas can be recorded by an oscilloscope and appear to be frequency modulated between 180 Hz and 250 Hz.
And the famous waggle dance, Warnke reminds us, by means of which honey bees tell each other the precise direction of food sources with respect to the sun, depends on their knowing the exact position of the sun, even on cloudy days, and within the darkness of the hive. Bees accomplish this feat by sensing minute variations in the earth’s magnetic field—a sense, he says, that can be rendered useless under the assault of wireless transmissions with their constantly changing magnetic fields.
The quickest way to destroy a bee hive, investigators have found, is to place a wireless telephone inside it. The results of such experiments, considering the complete denial by our society that wireless technology has any environmental effects at all, have been almost unbelievable.
In 2009, environmental scientist Ved Parkash Sharma and zoologist Neelima Kumar, at Panjab University in India, placed two cell phones each—one in talk mode and one in listening mode in order to maintain the connection—in two of four hives. They turned them on at 11:00 in the morning for 15 minutes, and at 3:00 in the afternoon for another 15 minutes. They did this twice a week between February and April. As soon as the phones were turned on the bees would become quiet and still “as if unable to decide what to do.” During the course of three months fewer and fewer bees flew in and out of those two hives. The number of eggs laid by the queen declined from 546 to 145 per day. The area under brood declined from 2,866 to 760 square centimeters. Honey stores declined from 3,200 to 400 square centimeters. “At the end of the experiment there was neither honey, nor pollen nor brood nor bees in the colony resulting in complete loss of the colony,” wrote the authors.
The following year Kumar performed a landmark experiment. She repeated the exposure of the previous year and then analyzed the bees’ blood, or hemolymph, as it is called. After the cell phones had been on for only ten minutes, the concentration of glucose, cholesterol, total carbohydrates, total lipids, and total protein rose tremendously. In other words, after just ten minutes of exposure to cell phones, the bees practically could not metabolize sugars, proteins, or fats. As in humans, their cells were becoming oxygen starved. But it happens much faster in bees. When the phones were left on longer than 20 minutes, the bees, at first quiet, became aggressive and started beating their wings in agitation.
Daniel Favre, at the Apiary School of the City of Lausanne, Switzerland, repeated the experiment and took it yet another step farther: he made a detailed analysis of the sounds made by the suddenly aggressive bees. He confirmed that bees exposed to a cell phone would become quiet and still when first exposed to a cell phone, and that within 30 minutes they would start to produce loud, high frequency sounds. When the phones had been on for 20 hours, the bees were still buzzing like mad 12 hours later. When Favre analyzed the sounds, he determined that they were the so-called “worker piping,” which is usually produced by bees only when they are preparing to swarm, shortly before takeoff.
Favre’s bees did not actually leave their hive after a single 20-hour exposure, but Sainudeen Pattazhy’s bees did, after a much shorter total exposure. A professor at Sree Narayana College, Pattazhy basically repeated Kumar’s initial experiment, except that instead of exposing his bees only twice a week he exposed them briefly everyday. He placed one cell phone inside each of six bee hives and turned the phone on for just ten minutes, once a day for ten days. While the phone was on, the bees became still. An average of 18 bees left the hive per minute while the phone was on, compared to 38 per minute at other times. The egg-laying rate of the queen declined from 355 to 100 per day. And after ten days no bees were left in any of the hives.
Europe’s first UMTS network, which is now known as “3G,” short for “third generation,” and which turned every cell phone into a computer, and every cell tower into a transmitter of broadband radiation, went into service in the fall of 2002—just before the disastrous winter during which so many of Europe’s honey bees vanished.
Warnke believes that HAARP—the High-frequency Active Auroral Research Project—is responsible for the worldwide outbreak of Colony Collapse Disorder that began in the winter of 2006-2007.
An “ionospheric heater” owned until recently by the United States Air Force and operated jointly with the Navy and the University of Alaska, HAARP is the most powerful radio transmitter on earth. Capable of emitting a peak effective radiated power of four billion watts, its purpose is to set the biosphere to ringing. HAARP, whose 180 antenna towers sit on the northwest tip of Alaska’s Wrangell-St. Elias National Park, has turned the ionosphere itself—the life-giving layer of sky to which every creature is tuned—into a gigantic radio transmitter useful for military communications, including communication with submarines. By aiming a narrow beam of pulsating energy upwards, there near the North Pole where the aurora meets the earth, Project HAARP can force rivers of sky to broadcast radio transmissions at the frequency of the pulsations, and to send those signals to almost everywhere on earth. In 1988, when planning for HAARP was still in its early stages, physicist Richard Williams, a consultant to Princeton University’s David Sarnoff Laboratory, called the project “an irresponsible act of global vandalism.” “Look at the power levels that will be used!” he wrote in Physics and Society, the newsletter of the American Physical Society. “This is equivalent to the output of ten to 100 large power-generating stations.”
In 1994·HAARP’s first 18 antennas were put into service.
In March 1999, HAARP expanded to 48 antennas and an effective radiated power of almost one billion watts. The rest of its complement of 180 antennas were delivered between 2004 and 2006, enabling the facility to reach its full intended power during the winter of 2006-2007. Although the Air Force shut HAARP down in 2014 and proposed to dismantle the facility, it instead was acquired by the University of Alaska Fairbanks, which reopened the facility in February 2017 and has made it available to the scientific community for research. The university is operating the facility at a loss, and it announced in 2019 that if it does not get sufficient funding, it will shut down HAARP permanently.
The frequencies of HAARP, says Warnke, superimpose unnatural magnetic fields on the natural resonant frequencies of the sky, whose daily variations have not changed since life appeared on earth. This is disastrous for bees. They “lose an orientation,” he says, “that served them for millions of years as a reliable indicator of the time of day.”
The word you're looking for is "AFFECT"